INHIBICION DE <u>STREPTOCOCCUS PYOGENES</u> Y <u>STAPHYLOCOCCUS AUREUS</u> POR EXTRACTOS VEGETALES USADOS EN EL TRATAMIENTO DE AFECCIONES RESPIRATORIAS

Alma Verónica Alvarez Químico Biólogo, Fac. CC.QQ, y F. USAC

Armando Cáceres Químico Biólogo, Centro Estudios Mesoamericanos para la Tecnología Apropiada, CEMAT.

1. SUMARIO

El objetivo del presente estudio fue determinar la acción antibacteriana in vitro de extractos etanólicos crudos de 16 plantas medicinales que se utilizan popularmente para el tratamiento de diferentes afecciones respiratorias⁽¹⁻⁴⁾.

La metodología empleada se basó en la prueba de Bauer-Kirby modificada, aplicada a cepas bacterianas Gram positivo, específicamente <u>Streptococcus pvogenes y Staphylococcus aureus</u>, utilizando extractos de las plantas en estudio a dos concentraciones conocidas de 5 y 10 mg.

Adicionalmente se determinó la menor concentración de extracto que inhibía a la bacteria en las plantas que presentaron resultados positivos, realizando diluciones de estas concentraciones iniciales, siempre mediante la técnica de impregnación en disco.

Los extractos que inhibieron al <u>S. pyogenes</u> fueron los siguientes en orden decreciente en base al promedio obtenido del diámetro de inhibición a las concentraciones de 5 y 10 mg.: <u>Eucalytus globulus, Matricaria recutita, Borrago officinalis, Ficus carica, Mentha arvensis, Salvia officinalis y Lippia alba; y al S. aureus: Thymus vulgris, E. globulus, Buddleia americana, L. alba, S. officinalis, Tilia platyphyllos, Cirsium mexicanum, Verbena litoralis, M. arvensis y Lippia dulcis.</u>

El extracto que mostró mayor actividad inhibitoria ante ambas bacterias fue el <u>E. globulus</u> y en menor grado las inhibieron: <u>L. alba, S. officinalis y M. arvensis.</u>

El <u>S. pyogenes</u> fue más susceptible al extracto de <u>E. globulus</u> a una concentración de 1.25 mg. y el <u>S. aureus</u> a <u>T. yulgaris</u> a una concentración de 0.31 mg.

2. INTRODUCCION

Las infecciones respiratorias son una de las principales causas de morbi-mortalidad en Guatemala y los demás países en vías de desarrollo.

Desde tiempos remotos la mayor parte de los pobladores del campo y personas de escasos recursos han recurrido a la medicación con plantas tradicionalmente usadas con fines medicinales, aunque sin tener una base científica o técnica para su utilización, usando la observación como principal instrumento de diseminación de conocimientos. Actualmente se mira con renovado interés a las plantas medicinales, este redescubrimiento del mundo vegetal, resulta más importante porque a través de largas y cuidadosas investigaciones, se ha llegado a un mejor conocimiento de los principios activos contenidos en las plantas y sus mecanismos de acción.

En la presente tesis se busca estudiar la acción antibacteria-

na de extractos vegetales de plantas popularmente usadas para el tratamiento de infecciones respiratorias, específicamente contra cocos Gram positivo, realizando pruebas antibacterianas in vitro, determinar la menor cantidad de extracto que inhiba a la bacteria, utilizando una modificación del método de Bauer-Kirby y así ampliar los conocimientos acerca de la actividad antimicrobiana de plantas medicinales, para promover la realización de investigaciones relacionadas con el uso de las mismas tendientes a aprovechar los recursos naturales del país.

3. MATERIALES Y METODOS

Se utilizaron extractos etanólicos crudos de 16 plantas utilizadas más frecuentemente en infecciones respiratorias⁽¹⁻⁸⁾ (Cuadro 1), contra dos microorganismos causales de infección respiratoria: <u>S. pvogenes y S. aureus</u>, provenientes del cepario del Departamento de Microbiología, Escuela de Química Biológica, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala.

Se realizó una encuesta en diferentes lugares de la República con personas conocedoras de plantas medicinales, específicamente utilizadas para el tratamiento de afecciones respiratorias, las plantas encontradas se complementaron con las encontradas en la literatura⁽¹⁻⁸⁾, las plantas a estudiar, se recolectaron y se organizaron en un herbario (Cuadro 1). Las plantas se secaron con los secadores solares diseñados por CEMAT, se conservaron en un lugar fresco y se empacaron en bolsas plásticas selladas.

Para preparar el extracto, se pulverizaron las plantas en un molino, y se realizó una extracción completa del contenido vegetal por medio de un extractor Soxhlet, utilizando etanol a 88°C, la extracción se realizó durante 8 días completos, se obtuvo extracto etanólico crudo de 50 g. de material vegetal seco. El filtrado obtenido se colocó sobre un baño de maría hasta obtener un residuo de consistencia melosa al evaporar el solvente. Se liofilizó el residuo y se reconstituyó con etanol a 88°C dependiendo del peso del residuo a una concentración de 500 mg/ml. Se impregnaron discos de papel secante estériles a concentraciones de 5 y 10 mg y a las positivas se realizaron diluciones de 2.5, 1.25, 0.62, y 0.31 mg.

Se realizaron pruebas antibacterianas in vitro utilizando una modificación del método de Bauer-Kirby^(9,10).

4. RESULTADOS Y DISCUSION

Inicialmente se encuestaron 60 personas conocedoras de plantas medicinales, en los departamentos de: Quetzaltenango, Chimaltenango, Sacatepéquez, Guatemala, Escuintla, Suchitepéquez, Retalhuleu, Santa Rosa, Chiquimula y Alta Verapaz. En esta encuesta se detectaron 110 plantas utilizadas comúnmente para el tratamiento de afecciones respiratorias y después de la revisión bibliográfica en la literatura europea y americana se determinó un listado básico de 116 plantas (Cuadro 2). A partir de este listado se eligieron 16 plantas que indicaban ser las de mayor uso popular por la frecuencia con que se encontraron (Cuadro 1). Se realizó un total de 7 ensayos diferentes para cada extracto vegetal estudiado, a dos concentraciones, 5 y 10 mg. de

impregnación contra dos microorganismos Gram positivo: <u>S.</u> pyogenes y S. aureus.

Los extractos que mostraron actividad inhibitoria ante <u>S</u>, <u>pyogenes</u> fueron los siguientes en orden descendente en base al promedio obtenido del diámetro de inhibición a las concentraciones de 5 y 10 mg. <u>E. globulus</u>, <u>M. recutita</u>, <u>B. officinalis</u>, <u>F. carica</u>, <u>M. arvensis</u>, <u>S. officinalis</u> y. <u>L. alba</u> (Cuadro 3) y ante <u>S. aureus</u>; <u>T. vulgaris</u>, <u>E. globulus</u>, <u>B. americana</u>, <u>L. alba</u>, <u>S. officinalis</u>, <u>T. platyphyllos</u>, <u>C. mexicanum</u>, <u>V. litoralis</u>, <u>M. arvensis</u>, y. <u>L. dulcis</u> (Cuadro 4).

Para <u>S. pyogenes</u> los rangos de los diámetros de inhibición a 5 y 10 mg. fueron de 7.21 - 11 mm. y para el <u>S. aureus</u> de 7.26 - 19.29 mm. (Cuadro 4 y 5). El extracto que mostró mayor actividad inhibitoria ante ambas bacterias fue el <u>E. globulus</u>, y en menor grado <u>L. alba, S. officinalis y M. arvensis</u> (Cuadro 4 y 5)

En la literatura se encontró que el <u>E. globulus</u> inhibe a los estreptococos hemolíticos y al <u>S. aureus</u>, lo cual se confirmó en

el presente estudio.

Es importante señalar que anteriormente se había realizado un estudio con <u>L. alba</u> utilizando la técnica de maceración etanólica al 10 por ciento en frío y los resultados obtenidos fueron negativos⁽⁵⁾; sin embargo en el presente estudio dieron positivos por ser una extracción completa, esta planta es importante porque es propia de nuestro país y ampliamente utilizada para estos fines.

M. recutita fue la segunda planta en dar buenos halos de inhibición contra S. pyogenes; T. vulgaris presentó los halos más

grandes de inhibición contra S. aureus.

La menor cantidad de extracto que inhibió al <u>S. pvogenes la</u> presentó <u>E. globulus</u> con una concentración de 1.25 mg., y para el <u>S. aureus el T. vulgaris</u> con una concentración de 0.31 mg. (Cuadro 6). En todos los casos se obtuvo una relación proporcional entre la concentración impregnada y el diámetro de inhibición obtenido.

La mayoría de las plantas mostraron una acción antibacteriana variable en la prueba de tamizaje. En cuanto a los extractos que no dieron inhibición que fueron 3, podría deberse ya sea a una concentración insuficiente, o bien, eventualmente a alguna inactivación química de los principios químicos activos provocado por el etanol, o que el principio activo fuera muy volátil, caso posiblemente del <u>C. citratus</u>, del cual existe un estudio que demuestra que es efectivo contra <u>S. aureus</u>. El aceite esencial específicamente Alfa-citral o geraniol y Beta-citral o meral es bastante volátil, y en el presente trabajo se perdieron estos principios activos probablemente al realizar en el procedimiento el paso de evaporar el solvente en baño de maría⁽⁸⁾.

En cuanto a la respuesta de cada microorganismo ante los extractos probados, el más susceptible fue el <u>S. aureus</u>.

5. CONCLUSIONES Y RECOMENDACIONES

La acción inhibitoria in vitro de los extractos etanólicos crudos de las 16 plantas utilizadas presentaron buenos resultados ya que dieron inhibición 13 plantas lo cual representa el 81.25%, los extractos que mostraron tener acción inhibitoria tanto para <u>S. pyogenes</u> como <u>S. aureus</u> fueron en orden descendente: <u>E. globulus</u>, <u>L. alba, S. officinalis</u>, y <u>M. arvensis</u>. Contra <u>S. pyogenes</u> el extracto que presentó mayor inhibición fue <u>E. globulus</u> y contra <u>S. aureus</u>, <u>T. vulgaris</u>. <u>S. pyogenes</u> fue el microorganismo más susceptible ante <u>E. globulus</u> a una concentración de 1.25 mg., y <u>S. aureus</u> ante <u>T. vulgaris</u> a 0.31 mg.

Se recomienda para trabajos futuros similares: continuar utilizando la técnica de extracción con Soxhlet, para obtener extractos crudos concentrados y así obtener halos de inhibición más grandes. Realizar un estudio in vitro similar usando las plantas de este estudio, pero a concentraciones diferentes y otros solventes de diferentes polaridades, llevar a cabo estudios complementarios in vivo e in vitro que dé más base científica para la comercialización o utilización industrial de las plantas que presentaron acción antibacteriana. Realizar otras pruebas de tamizaje con otras plantas y otros microorganismos siendo uno muy importante <u>Mycobacterium tuberculosis</u>.

Confirmar con estudios más profundos las plantas que dieron resultados positivos, tratando de aislar e identificar el principio activo responsable de dicha acción. Realizar la prueba antibacteriana CIM (en tubo). Introducir en el pensum de estudios tanto de Químico Farmacéutico, Biólogo y Químico Biólogo cursos sobre Etnobotánica Medicinal (Medicina Tradicional).

6. AGRADECIMIENTOS

A el Licenciado Armando Cáceres por su asesoría en el presente trabajo.

A el Centro Mesoamericano de Estudios sobre Tecnología Apropiada CEMAT.

A la Fundación Guatemalteca para el Desarrollo "Carroll Behrhorst".

Al Departamento de "Radiofarmacia" del Hospital General "San Juan de Dios".

Al Hospital Nacional de Chimaltenango.

7. REFERENCIAS

- Díaz, JL. (ed.). Indice y Sinónimos de las Plantas Medicinales de México. México: Instituto Mexicano para el Estudio de las Plantas, 1976. XI + 358p. (p. 1-358).
- 2 Díaz, JL. (ed.). Uso de las Plantas Medicinales en México. México: Instituto Mexicano para el Estudio de las Plantas, 1976. XI + 329p. (p. 1-329).
- Dieseldorff, E. Las plantas medicinales del departamento de Alta Verapaz. Anales de la Sociedad de Geografía e Historia de Guatemala, s.e. 1940. 260p. (p. 92-105).
- Morton, JF. Atlas of Medicinal Plants of Middle America. Illinois: Charles Thomas Publishers, 1981. XXVIII + 1420. (p. 1-1420).
- Pérez, RA. Sensibilidad bacteriana in vitro con extractos de plantas medicinales usadas popularmente en el tratamiento de infecciones respiratorias superiores. Guatemala: Universidad de San Cárlos, (tesis de graduación, Facultad de Ciencias Médicas). 1986. 43p.
- Compadre, CM., Robbins, EF., & Kinghorn, AD. The intensely sweet uses, field inquiries and constituents. USA: J Ethnoph. 1986; 15:89-106.
- Houghton, PJ. Ethnopharmacology of some Buddleja species. USA: J Ethnoph 1984; 11:293-308.
- Onawunmi, CO., Yisak, WAB. & Ogunlana, EO. Antibacterial constituents in the essential oil of Cymbopogon citratus (DC). Stapf. USA: J Ethnoph 1984; 12:279-286.
- Lennette, EH. et. al. Manual of Clinical Microbiology. 4th. ed USA: American Society for Microbiology. 1985. 1197p. (p 526).
- Bauer, AW. Kirby, WM., Sherris, JC., & Turk, M. Antibiotic susceptibility testing by standarized single disk method American Journal of Clinical Pathology, 1966. 36: 493-496p

Cuadro No. 1 Clasificación de las plantas a utilizar experimentalmente

No.	NOMBRE COMUN	GENERO Y ESPECIE	FAMILIA	PARTE USADA
1.	Albahaca	Ocimum basilicum	Labiadas	H, S y f
2.	Borraja	Borrago officinalis	Borragináceas	Hyf
3.	Cardo santo	Cirsium mexicanum	Compuestas	H, f y R
4.	Eucalipto	Eucalyptus globulus	Mirtáceas	H Herrick V
5.	Tilo	Tilia platyphyllos	Tiliáseas	for elected as
6.	Hierbabuena	Mentha arvensis	Labiadas	Н
7.	Higo	Ficus carica	Moráceas	H
8.	Manzanilla	Matricaria recutita	Compuestas	Hyf
9.	Orozuz	Lippia dulcis	Verbenáceas	H, f y T
10.	Salvia real	Salvia officinalis	Labiadas	Hyf
11.	Salvia santa	Buddleja americana	Loganiáceas	Toda la planta
12.	Sauco	Sambucus mexicana	Caprifoliáceas	H, f, 2a. corteza y F
13.	Salvia sija	Lippia alba	Verbenáceas	Hyf
14.	Té de limón	Cymbopogon citratus	Gramíneas	H y T frescos
15.	Tomillo	Thymus vulgaris	Compuestas	H, T
16.	Verbena	Verbena litoralis	Verbenáceas	H, f y T

H: hojas; f: flores; T: tallo; F: fruto; S: semilla.

Cuadro No. 2

Número de plantas encontradas por la encuesta y revisión de la literatura nacional e internacional comúnmente usadas en afecciones respiratorias.

5 9	albahaca alhucema					THE PERSON NAMED IN	
9	alhucoma	2	acacia	3	aguacate	4	ajo
	amucema	6	almendra	7	ajenjo	8	amapola
13	anona	10	azahar	11	azalea	12	apasín
	barba viejo	14	berro	15	botón de virgen	16	bugambilia
17	borraja	18	cacao	19	café	20	campánula
21	caña fístula	22	cardobendito	23	cardosanto	24	cebolla
25	cebada	26	cedro	27	ciruela	28	ciruela pasa
29	ciprés	30	chichitas	31	culantrillo	32	chulas
33	chiltepe	34	chicoria	35	clarencillo	36	chichiguaste
37	chichibé	38	durazno	39	encino	40	esponjuelo
41	estigma de maíz	42	eucalipto	43	izote	44	sauco
45	tilo	46	florecilla	47	fresa	48	florifundia
49	genciana	50	goma arábiga	51	gordolobo	52	granada
53	granadía	54	guanaba	- 55	mango	56	hoja de 3 puntas
57	hoja principal	58	hierbabuena	59	higo	60	hisopo
61	jazmín	62	jenjibre	63	ipecacuana	64	jilipliegue
65	limón	66	lechuga	67	llantén	68	linaza
69	lirio	70	lengua de vaca	71	mandarina	72	manzanilla
73	mejorana	74	miltomate	75	morro	76	mostaza
	mostaza criolla	78	menta	79	musilago	80	naranja
81	naranja agria	82	nabo	83	nogal	84	ocote
	orégano	86	ortiga	87	orozuz	88	pensamiento
	pimienta	90	patío	91	pimienta gorda	92	piña
	plátano		pino	95	quequeste	96	romero
	ruboranda		ruda		rábano	100	sábila
	salvia real		salvia santa		salvia sija	104	siguapate
	tabaco		tabaco bobo		té de limón	108	tomate
	tomillo		tatarata		tinta	112	verbena
	violeta		vifuela		verbenón	116	yema de abeto

FACULTAD DE CIENCIAS QUIMICAS Y FARMACIA INSTITUTO DE INVESTIGACIONES QUIMICAS Y BIOLOGICAS UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

Cuadro No. 3 Actividad inhibitoria in vitro anti - S. pyogenes de extractos crudos etanólicos.

No.	NOMBRE CIENTIFICO	DIAMETRO DE HALO DE INHIBICION (mm.) A B			
1.	Ocimum basilicum	7 ± 0	7 ± 0		
2.	Borrago officinalis	8.07 ± 0.17	8.21 ± 0.25		
3.	Cirsium mexicanum	0±00 7±0	7 ± 0		
4.	Eucalytus globulus	10 ± 0.96	11 ± 1.15		
5.	Tilia platyphyllos	7 ± 0	7 ± 0		
6.	Mentha arvensis	7.71 ± 0.25	7.93 ± 0.56		
7.	Ficus carica	7.86 ± 0.22	8.28 ± 0.25		
8.	Matricaria recutita	9.43 ± 0.49	9.71 ± 0.45		
9.	Lippia dulcis	7 ± 0	7 ± 0		
10.	Salvia officinalis	7.21 ± 0.06	7.56 ± 0.07		
11.	Buddleja americana	7 ± 0	7 ± 0		
12.	Sambucus mexicanum	7 ± 0	7 ± 0		
13.	Lippia alba	7 ± 0	7.78 ± 0.25		
14.	Cymbopogon citratus	7 ± 0	7 ± 0		
15.	Thymus vulgaris	7 ± 0	7 ± 0		
16.	Verbena litoralis	7 ± 0	7 ± 0		

5 mg. de extracto (0.01 ml)

B = 10 mg. de extracto (0.02 ml)

Diámetro de los discos 7 mm.

Cuadro No. 4 Actividad inhibitoria in vitro anti - <u>S. aureus</u> de extractos crudos etanólicos.

No.	NOMBRE CIENTIFICO	DIAMETRO DE HALO DE INHIBICION (mm.) A B			
1.	Ocimum basilicum	7 ± 0	7 ± 0		
2.	Borrago officinalis	7 ± 0	7 ± 0		
3.	Cirsium mexicanum	7.46 ± 0.18	7.78 ± 0.25		
4.	Eucalytus globulus	12.50 ± 0.60	15.86 ± 0.83		
5.	Tilia platyphyllos	7 ± 0	8.50 ± 0.38		
6.	Mentha arvensis	7.26 ± 0.05	7.50 ± 0.09		
7.	Ficus carica	7 ± 0	7 ± 0		
8.	Matricaria recutita	7 ± 0	7 ± 0		
9.	Lippia dulcis	7 ± 0	7.37 ± 0.10		
10.	Salvia officinalis	8.57 ± 0.62	9.00 ± 0.27		
11.	Buddleja americana	9.28 ± 1.16	13.71 ± 0.88		
12.	Sambucus mexicanum	7 ± 0	7 ± 0		
13.	Lippia alba	9.57 ± 0.94	10.43 ± 0.42		
14.	Cymbopogon citratus	7 ± 0	7 ± 0		
15.	Thymus vulgaris	17.86 ± 1.55	19.29 ± 0.70		
16.	Verbena litoralis	7 ± 0	8.00 ± 0.53		

A = 5 mg. de extracto (0.01 ml)

B = 10 mg. de extracto (0.02 ml)

Cuadro No. 5

Menor cantidad de extractos crudos etanólicos que inhibieron a los microorganismos estudiados

No.	NOMBRE CIENTIFICO	MILIGRAMOS DE EXTRACTO IMPREGNADO EN CADA DISCO		
		А	В	
1.	Ocimum basilicum		rka datawa 1919 ili Masari da masari	
2.	Borrago officinalis	5		
3.	Cirsium mexicanum		5	
4.	Eucalytus globulus	1.25	0.62	
5.	Tilia platyphyllos		10	
6.	Mentha arvensis	5	5	
7.	Ficus carica	5		
8.	Matricaria recutita	5		
9.	Lippia dulcis		10	
10.	Salvia officinalis	5	0.62	
11.	Buddleja americana	5	2.50	
12.	Sambucus mexicanum			
13.	Lippia alba	10	0.62	
14.	Cymbopogon citratus		A	
15.	Thymus vulgaris		0.31	
16.	Verbena litoralis	THE PERSON NAMED IN	10	

A = S. pyogenes

B = S. aureus